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Exclusion processes on a regular lattice are used to model many biological and physical systems at a discrete
level. The average properties of an exclusion process may be described by a continuum model given by a
partial differential equation. We combine a general class of contact interactions with an exclusion process. We
determine that many different types of contact interactions at the agent-level always give rise to a nonlinear
diffusion equation, with a vast variety of diffusion functions D�C�. We find that these functions may be
dependent on the chosen lattice and the defined neighborhood of the contact interactions. Mild to moderate
contact interaction strength generally results in good agreement between discrete and continuum models, while
strong interactions often show discrepancies between the two, particularly when D�C� takes on negative values.
We present a measure to predict the goodness of fit between the discrete and continuous model, and thus the
validity of the continuum description of a motile, contact-interacting population of agents. This work has
implications for modeling cell motility and interpreting cell motility assays, giving the ability to incorporate
biologically realistic cell-cell interactions and develop global measures of discrete microscopic data.
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I. INTRODUCTION

Exclusion processes are a class of lattice-based interacting
random walk models where agents move and each lattice site
is occupied by at most one agent �1,2�. Because each agent
excludes all others from occupying the same position, exclu-
sion processes are a natural choice to model real motility
processes with applications including traffic flow �3�, cell
motility �4�, and ecological applications �5�.

Exclusion processes can be viewed from two different
perspectives. Microscopic simulation data can be visualized,
so that the movement of individual agents within the popu-
lation can be tracked �6–8�. Alternatively, simulation data
can be averaged—this data then correspond to a macroscopic
continuum description of the system in terms of a partial
differential equation �PDE� �1,6,9,10�. The construction of
continuum models can be advantageous relative to the mi-
croscopic approach, since a PDE gives a global perspective
of the system and is particularly attractive when considering
large systems where repeated simulations are computation-
ally infeasible.

Traditional averaging of symmetric exclusion processes
�without bias� gives a linear diffusion equation �1�. Although
agents interact with each other, the interactions are symmet-
ric and cancel �9�. Therefore, these interactions do not appear
in the macroscopic description of the system, given by a
linear PDE �1�. More recently, an asymmetric simple exclu-
sion process, with a biologically motivated contact-
maintaining motility mechanism, was developed by Deroul-
ers et al. �6�. The additional interactions led to a nonlinear
diffusion equation.

Here, we extend the work of Deroulers et al. �6� to a
broader range of biologically motivated mechanisms, ac-
counting for contact-forming, contact-breaking, and contact-
maintaining interactions. The contact interactions are consid-

ered within the framework of an exclusion process on a
general d-dimensional lattice. Conservation arguments are
used to derive continuum models, which are described by
nonlinear diffusion equations. These nonlinear diffusion
equations are validated for a range of two-dimensional lat-
tices. We also develop simple tools to predict when the av-
eraged discrete and continuum models match and when they
differ.

The PDE models developed here support a range of com-
plex behaviors. We can choose motility mechanisms leading
to nonlinear diffusion functions D�C�, which are positive and
either monotonically increasing or decreasing functions for
all C� �0,1�, and others with even more features. Some con-
tact interactions lead to nonlinear diffusion functions which
are negative on some interval �C1 ,C2�� �0,1�. In these
cases, the PDE models may give rise to solutions containing
shocks �11�.

II. DISCRETE MODEL

Motile agents move on an arbitrary d-dimensional peri-
odic lattice with uniform spacing �. Agents can be viewed
either as occupying sites or as residing in regions, since each
site v is associated with a spatial region consisting of all
points closer to site v than to any other. In two dimensions,
these regions are polygonal tiles; the square lattice is associ-
ated with square tiles, while the triangular lattice is associ-
ated with hexagonal tiles.

Before describing various contact interaction mecha-
nisms, we define various neighborhood sets.

A. Neighborhood sets

For any site v on a periodic lattice, we define five neigh-
borhood sets.

�a� N�v� denotes the set of nearest-neighbor sites, that is,
those sites one lattice-space distant from v. In the model,*kerryl@unimelb.edu.au
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these are the sites to which movements from site v can be
attempted.

�b� A�v� denotes the set of sites whose occupants are in
contact with an agent at v and potentially influence the
movement of an agent at v. This neighborhood is referred to
as the interacting neighborhood.

�c� M�v ,v�� denotes the set of maintained sites in the
interacting neighborhood when moving from site v to site
v��N�v�. Hence, M�v ,v��=A�v��A�v��.

�d� B�v ,v�� denotes the set of sites in the interacting
neighborhood A�v�� gained in a move from v to v�, exclud-
ing the original site v. Hence, B�v ,v��=A�v�� \ �A�v��v�.
This neighborhood is referred to as the contact-forming
neighborhood.

�e� U�v ,v�� denotes the set of sites in the interacting
neighborhood A�v� lost in a move from v to v�, excluding
the destination site v�. Hence, U�v ,v��=A�v� \ �A�v���v��.
This neighborhood is referred to as the contact-breaking
neighborhood. Symmetry considerations give U�v ,v��
=B�v� ,v�.

Figure 1 illustrates each of these sets on four different
lattices. Two variations on the square lattice are given—in
both cases the nearest neighbors are the same, but there is a
difference in the interacting neighborhoods. When the inter-
acting neighborhood is a von Neumann neighborhood �12�,
then A�v�=N�v�. In contrast, when the interacting neighbor-
hood is a Moore neighborhood �12�, then A�v� comprises the
four nearest neighbors together with the four diagonal neigh-
bors. As shown, this choice of interacting neighborhood
leads to distinctly different neighborhoods for the contact
interactions, given by M�v ,v��, B�v ,v��, and U�v ,v��.

The number of elements in a set Z is denoted by �Z�. In
particular, the number of nearest neighbors of site v is
N= �N�v��.

B. Exclusion process with contact interactions

A simple exclusion process �1,2� with random sequential
updating �13� is implemented on the periodic lattice. If there
are M agents on the lattice, then for each time step of dura-
tion �, we make M sequential independent random choices of
an agent. On average, each agent is chosen once per time
step. When chosen, an agent is given the opportunity to
move with probability P. Naturally, in an exclusion process,
when an agent is chosen to move to a target site in N�v� that
is already occupied, the move is aborted.

Consider an agent at site v which has been given an op-
portunity to move with probability P. We discuss two
choices to accommodate contact interactions.

�1� Determine direction and then contact interactions:
randomly choose a target site from N�v� with equal probabil-
ity for each site. Then determine the contact interactions in
terms of the neighborhood sets M�v ,v�� ,B�v ,v�� ,U�v ,v��
and finally assign probabilities to complete the move. In
implementing this method, two random numbers are gener-
ated per motile agent per move.

�2� Determine contact interactions and then direction: de-
termine all the possible target site contact interactions in
terms of the neighborhood sets and then determine the prob-
ability of movement to each site in N�v�. In implementing
this method, only one random number is generated per mo-
tile agent per move.

III. CONSERVATION EQUATION AND CONTINUUM
MODEL

Instead of using a quantumlike formalism for master
equations like in Deroulers et al. �6�, here, we rely on stan-
dard conservation arguments to derive a continuum model
�1�. The key steps in connecting our discrete model with a
continuum model are outlined. We denote the occupancy of
site v as Cv, with Cv=1 for an occupied site and Cv=0 for an
empty site. Averaging over many statistically identical real-
izations, we write the average occupancy of site v as �Cv	.
This �Cv	 can also be interpreted as the local probability of
occupancy or the local density.

The change in average occupancy of site v during the
time interval t to t+� is denoted ��Cv	. We let T�v� �v� be the
conditional transition probability that the agent will move
from site v to site v��N�v� during �. Then, the change in
average occupancy due to a transition in a given direction is
T�v� �v��Cv	. Summing all directions, we obtain the discrete
conservation equation

��Cv	 = 

v��N�v�

�T�v�v���Cv�	 − T�v��v��Cv	� . �1�

Changes in average occupancy due to transitions into site v
have a positive sign, while transitions out of site v have a
negative sign. Since we interpret each factor in Eq. �1� as a
probability, we are assuming that the occupancy of a lattice

1D Von Neumann Moore Hexagonalv v’

Interacting Neighbors
A{v}

Nearest Neighbors
N{v}

Contact-maintaining
Neighbors
M{v,v’}

Contact-forming
Neighbors
B{v,v’}

Contact-breaking
Neighbors
U{v,v’}

FIG. 1. Neighborhood sets for a one-dimensional and various
two-dimensional lattices. Black markers depict the reference site v,
white markers depict the target site v��N�v�. The defined neigh-
borhood set in each row is shaded gray. Note that in one-dimension
and for the von Neumann neighborhood, M�v ,v��=0” .
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site is independent of the occupancy of other lattice sites �1�.
A similar assumption is implicit in developing each T�v� �v�
below. Equation �1� is the starting point for various con-
tinuum models that incorporate different types of contact in-
teractions in the conditional probabilities T�v� �v�.

The discrete model is related to a PDE in the appropriate
limit as �→0 and �→0, where the discrete values of �Cv	
are replaced by a continuous variable C. To do this, all terms
in Eq. �1� are expanded in Taylor series about the particular
site v, keeping terms up to O��2�. The truncated Taylor se-
ries are substituted into Eq. �1�, and the expression is divided
by �. Taking limits as �→0 and �→0 jointly, with the ratio
�2 /� held constant �14,15�, in the continuum limit we obtain
a nonlinear diffusion equation of the form

�C

�t
= D0 � · �D�C� � C� . �2�

Here, the free agent diffusivity is

D0 =
P

2d
lim

�,�→0
��2

�
� , �3�

where d is the dimension of the lattice. In the following
sections, we will show that the diffusivity function D�C�
depends on the nature of the contact interactions and the
lattice used in the discrete model.

IV. DIRECTION THEN INTERACTIONS

In the first method, there are N equally likely choices of
target site from N�v�. We consider contact-maintaining,
contact-forming, and contact-breaking neighborhoods and
determine the relevant T�v� �v�.

For the simple case when there are no agent interactions
apart from exclusion, the conditional transition probability
T�v� �v� is the probability P /N of moving to any of the target
sites v� multiplied by the probability that the destination site
v� is vacant. Therefore,

T�v��v� =
P

N
�1 − �Cv�	� . �4�

In the continuum limit, we obtain a linear diffusion equation
with D�C�=1 �1,10�.

A. Contact-maintaining interactions

Recently, Deroulers et al. �6� investigated a specific type
of contact interaction on a hexagonally tiled lattice in two
dimensions and face-centered cubic and hexagonal close-
packed lattices in three dimensions. The motility events were
affected by the occupancy of sites in common between the
occupied and target site �exactly our maintain neighborhood
set M�v ,v���. After choosing a direction, the move was
completed with probability u if at least one of the two adja-
cent cells is occupied, and probability �1−u� if both are un-
occupied. Here, we confirm and generalize their results on an
arbitrary d-dimensional lattice.

We require the occupancy of the contact-maintaining set
M�v ,v�� and express the probability that at least one mem-

ber is occupied as the complement that all are empty, namely,

PM�v,v�� = 1 − 
m�M�v,v��

�1 − �Cm	� . �5�

Since the maintained neighbors being occupied or unoccu-
pied are mutually exclusive events, we assign independent
probabilities of movement in each instance. If we define the
probability u of moving if at least one of the sites in
M�v ,v�� is occupied, and w if all are unoccupied, then the
conditional transition probability is

T�v��v� =
P

N
�1 − �Cv�	��uPM�v,v�� + w�1 − PM�v,v���� . �6�

Substituting this term into Eq. �1� and taking limits leads to
Eq. �2� with

D�C� = u + �w − u��1 − C�m, �7�

for m= �M�v ,v���. The nonlinear diffusion functions for a
selection of lattices are given in Table I in the Appendix.

For the special case of w=1−u, Eq. �7� reduces to the
results of Deroulers et al. �6� for the triangular lattice
�d=2, m=2�, and for the face-centered cubic and hexagonal
close-packed lattice �d=3, m=4�.

We note that regardless of the choices of probabilities u
and w, D�C� is non-negative on the interval C� �0,1�. When
w=u, so there is no bias on maintaining contact neighbors,
D�C� is independent of C, so we again have a linear diffu-
sion equation.

B. General contact-forming and contact-breaking interactions

Transitions from v to v� will result in some elements in
the interacting neighborhood being gained and some being
lost. We describe the four possible scenarios, depending on
the occupancy of B�v ,v�� and U�v ,v��. Given a choice of v�,
if all sites in both sets are unoccupied, then the motile agent
will complete the move with probability s. If at least one
contact-forming neighbor is occupied and the contact-
breaking neighbors are unoccupied, this is a pure contact-
forming move, and the probability of completing the move is
p. Similarly, a pure contact-breaking move results when at
least one contact-breaking neighbor is occupied and all
contact-forming neighbors are unoccupied, and is completed
with probability q. Finally, if at least one site is occupied in
both the contact-forming and contact-breaking neighbor-
hoods, then it is completed with probability r.

The probability PB�v,v�� that at least one contact-forming
site is occupied is the complement of the probability that all
are empty. Likewise, the probability PU�v,v�� can be defined.
Thus,

PB�v,v�� = 1 − 
b�B�v,v��

�1 − �Cb	� ,

PU�v,v�� = 1 − 
u�U�v,v��

�1 − �Cu	� . �8�

The conditional transition probability is written as
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T�v��v� =
P

N
�1 − �Cv�	��s�1 − PB�v,v����1 − PU�v,v���

+ pPB�v,v���1 − PU�v,v��� + q�1 − PB�v,v���PU�v,v��

+ rPB�v,v��PU�v,v��� . �9�

Substituting this term into Eq. �1� and taking continuum lim-
its leads to Eq. �2�. The nonlinear diffusion function for a
selection of lattices is given in Table I in the Appendix. If we
define �= �A�v��+1 and k= �B�v ,v���= �U�v ,v���, then

D�C� = r + �s − p − q + r��1 − C�2k

+ �p�1 − �C� + q�1 + �C� − 2r��1 − C�k. �10�

We note that D�0�=s and D�1�=r.
It is useful to consider contact-forming or contact-

breaking interactions in isolation. For contact-forming inter-
actions alone, we take the general formulation and neglect
the contact-breaking interactions by setting q=s and r= p.
With these restrictions, Eq. �10� simplifies to

D�C� = p + �s − p��1 + �C��1 − C�k. �11�

Since D�0�=s and D�1�= p, the contact-forming probability
dominates at high densities, and free movement probability
dominates at low densities. When p=s, there is no bias to-
ward or away from forming contacts and we obtain a linear
diffusivity, D�C�=s, as expected.

Similarly, we consider the contact-breaking interactions
alone by choosing p=s and r=q. Substituting these values
into Eq. �10� gives the contact-breaking diffusion function as

D�C� = q + �s − q��1 − �C��1 − C�k. �12�

Note that this is similar to Eq. �11�, with only a change in
sign in the linear factor in C. Now D�0�=s and D�1�=q,
while q=s results in the constant D�C�=s.

Finally, we note that D�C� in Eqs. �11� and �12� will have
either a local minimum or maximum for C� �0,1�. Clearly,
in the case of local minimum, values of C where D�C��0
will have interesting consequences.

C. Combined contact-forming or contact-breaking and
contact-maintaining interactions

The general contact-forming or contact-breaking interac-
tions may be combined with the contact-maintaining interac-
tions. If the contact-maintaining interactions operate inde-
pendently of the contact-forming and contact-breaking
interactions, we define �i� u and w as the probabilities of
moving if there are at least one or zero maintained neighbors,
respectively, described in Sec. IV A, and �ii� p, q, r, and s are
the probabilities for the contact-forming or contact-breaking
interactions described in Sec. IV B. Then, the conditional
probability is given by

T�v��v� =
P

N
�1 − �Cv�	��uPM�v,v�� + w�1 − PM�v,v����

��s�1 − PB�v,v����1 − PU�v,v���

+ pPB�v,v���1 − PU�v,v��� + q�1 − PB�v,v���PU�v,v��

+ rPB�v,v��PU�v,v��� . �13�

This generates

D�C� = �u + �w − u��1 − C�m� � �r + �s − p − q + r��1 − C�2k

+ �p�1 − �C� + q�1 + �C� − 2r��1 − C�k� . �14�

It is interesting to note that this expression is simply a prod-
uct of the D�C� functions given by Eqs. �7� and �10�.

Alternatively, if the contact-maintaining interactions do
not operate independently of the contact-forming and
contact-breaking interactions then we need to define different
values for the contact-forming or contact-breaking interac-
tion probabilities, depending on whether or not maintained
neighbors participate in the move. In the usual way, we de-
fine probabilities p, q, r, and s if there are no maintained
neighbors, and probabilities p�, q�, r�, and s� if at least one
maintained neighbor is present. The resulting diffusion func-
tion is

D�C� = �1 − �1 − C�m��r� + �s� − p� − q� + r���1 − C�2k

+ �p��1 − �C� + q��1 + �C� − 2r���1 − C�k�

+ �1 − C�m�r + �s − p − q + r��1 − C�2k

+ �p�1 − �C� + q�1 + �C� − 2r��1 − C�k� . �15�

D. In-line contact-forming and contact-breaking
interactions

On any lattice where sites are arranged in lines, it is pos-
sible to restrict the interacting neighborhood for a given
move to be the neighbors along the line in the direction of
the move. The in-line neighborhood is then just that of the
one-dimensional case shown in Fig. 1. Transition probability
arguments for the in-line neighborhoods yields, in the con-
tinuum limit, the set of nonlinear diffusion functions for the
one-dimensional line, tabulated in the third row in Table I in
the Appendix. Of course, the dimension of the lattice still
appears in the free agent diffusivity D0 in Eq. �3�. �Note that
contact-maintaining rules are not applicable for in-line inter-
actions.�

Our previous contact interaction neighborhoods
gave lattice dependent D�C� functions, since they
involve the constants m= �M�v ,v���, �= �A�v��+1, and/or
k= �B�v ,v���= �U�v ,v���. When the interactions are applied to
in-line neighborhoods, the D�C� functions are lattice inde-
pendent, since the interacting neighborhood, and hence k and
�, are the same for all lattices.

V. COMPARING DISCRETE AND CONTINUUM RESULTS

To test the validity of our averaging arguments, we gen-
erate and compare results from the discrete and continuum
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models for two kinds of simulations. First, we compare tran-
sient simulations describing the spreading of an initially
close-packed population. Second, we compare steady state
profiles describing the movement of agents between two res-
ervoirs of a given density. For the transient simulation, we
compare averaged simulation data to the numerical solution
of Eq. �2�, while for the steady problem, we compare aver-
aged discrete data to an exact analytical solution of the as-
sociated boundary value problem.

Equation �2� is solved numerically with a finite difference
method with constant grid spacing �x and implicit Euler
stepping with constant time steps �t. Picard linearization,
with tolerance �, is used to solve the nonlinear equations. All
one-dimensional continuum solutions presented in this
work correspond to �x=0.5 and �t=0.1, and tolerance
�=1�10−6. This choice of �x gives grid-independent results.

A. Transient results

For the transient simulations, we consider a two-
dimensional lattice, with spacing �=1, of size 200�20 with
periodic boundary conditions imposed on the horizontal
boundaries and reflecting boundary conditions imposed on
the vertical boundaries. All sites with 80	x	120 are ini-
tially occupied with agents. This initial condition and the
periodic boundary conditions reduce the system to a one-
dimensional problem since no vertical structure is imposed
by the initial agent distribution or the boundary conditions.
Column-averaged density data, averaged over 200 identically
prepared realizations �8,9� is compared with the solution of a
one-dimensional form of Eq. �2�.

The three columns in Fig. 2 illustrate a range of results for

contact-forming interactions on a hexagonal tiling. Results in
Figs. 2�a� and 2�b� are for mildly repelling and strongly re-
pelling cases, respectively, while Fig. 2�c� corresponds to a
very strongly attracting case. Snapshots of the agents at
t=1000 are given in the top row showing that the agents
spread further from their initial location when the agents are
more repelling. The solution of Eq. �2� is compared with
column-averaged density profiles from the simulations in the
middle row, showing a good correspondence between the
simulation data and the continuum model for the cases
p=0.1 and p=0.4. The density data for p=0.99 shows a di-
vergence between the simulation data and the continuum
model. Moreover, we observe the formation of discontinuous
solutions of the continuum model for this case.

The transition from smooth solutions to discontinuous so-
lutions of the nonlinear diffusion equations can be explained
by investigating the functional dependence of D�C�, given in
the bottom row of Fig. 2. For the first two columns,
D�C�
0. In contrast, in the last column D�C��0 for some
values of C— this occurs for a sufficiently large contact-
forming parameter p, corresponding to sufficiently strong
agent adhesion. We note that the numerical solution of the
PDE develops a shock, and that the values of C sampled
correspond only to those where D�C�
0, as seen in the
middle row in Fig. 2�c�. The existence of discontinuous so-
lutions of nonlinear diffusion equations has been previously
analyzed �11�. More recently, Anguige and Schmeiser �16�
developed a continuous-time master equation representing
cell motility with adhesion on a one-dimensional lattice. In
the continuum limit, their discrete model gave a nonlinear
diffusion equation where the diffusivity could be negative for
sufficiently strong adhesion.

In addition to the contact-forming interactions shown in
Fig. 2, we also find the comparison between the discrete and
continuum models to be excellent for contact-breaking, gen-
eral contact-forming/contact-breaking, and contact-
maintaining interactions for a range of parameter values.

Finally, in Fig. 3, we present results for the contact-
forming interaction model implemented on three different
lattices, using the von Neumann, Hexagonal, and Moore in-
teraction neighborhoods. On all lattices, the comparison be-
tween the continuum and discrete data is excellent. Note that
a small discontinuity develops in the continuum solution il-
lustrated Fig. 3�c�. However, we have the intriguing result
that different lattices lead to different diffusivity functions
D�C�, through different values of � in Eq. �11�. This means
that different continuum models are obtained on different
lattices with the same mechanism in two-dimensions �and
similarly in three dimensions�.

B. Steady state results

To complement the transient simulations, we also per-
formed a suite of steady state simulations on a two-
dimensional lattice, with spacing �=1, of size 200�200
with periodic boundary conditions imposed on the horizontal
boundaries. Agents moving into the vertical column at x=0
are removed at the end of each time step giving C=0 in this
column while agents are introduced into any empty sites in
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0 x 200
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0 C 1
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FIG. 2. �Color online� Transient results for contact-forming in-
teractions on a hexagonal tiling �k=3, �=7� for various interaction
strengths with s=1− p for �a� p=0.4 �mildly repelling�, �b� p=0.1
�strongly repelling�, and �c� p=0.99 �very strongly attracting�. Re-
sults in the top row show the distribution of agents in a single
realization after 1000 time steps. The middle row compares the
solution of the continuum model �black� and the averaged column
density data �red� at t=0,10,100,1000; arrows indicate the direc-
tion of increasing time. The bottom row shows the functional
dependence of D�C� on C �red� with D�C�=0 given by the horizon-
tal line �black�. All discrete data use P=�=�=1 and averages are
taken over 200 Monte Carlo realizations. Numerical solutions of the
continuum models use �x=0.5 and �t=0.1. In �c�, D�C��0 for
some values of C and the solutions of the continuum model have a
discontinuity.
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the vertical column at x= l �=200 here� at the end of each
time step giving C=1 in this column. The system was
deemed to be steady when the change in the average occu-
pancy of each column was below a tolerance. The continuum
model for this problem is the boundary value problem

d

dx
�D�C�

dC

dx
� = 0, C�0� = 0, C�l� = 1. �16�

The implicit solution is given by

x�C� =

l�
0

C

D�U�dU

�
0

1

D�U�dU

. �17�

For the polynomial forms of D�C� considered in this work,
the integrals in Eq. �17� are straightforward to evaluate.

Figure 4�a� compares simulation data with the implicit
solution Eq. �17�. Here, we see similar trends previously ob-
served in the transient results. For problems where the varia-
tion in D�C� is sufficiently small, corresponding to p and s
near 0.5, the match between the simulation data and the so-
lution of the boundary value problem is very good. For more
extreme values of the parameter ranges, we begin to see
discrepancies between the results from the two models. In
particular, for p=0.99, D�C��0 for some values of C, and
the solution given by Eq. �17� has a shock at x=0.

Results for the contact-maintaining interactions �where
the diffusivity is always positive� are illustrated in Fig.
4�b�—they follow the same trends as those in Deroulers
et al. �6�. We observe that the continuum model predicts the

average discrete simulation data provided that 0.1	u	1.
For lower values of u the continuum and discrete models
diverge.

C. Quality of fit between the discrete and continuum models

Given a set of interactions for the discrete model, it would
be useful to know when the quality of fit between the aver-
age discrete data and the continuum model is good. Here, we
develop a predictive tool which estimates the quality of fit.

We suggest that a useful indicator of the quality of fit is a
dimensionless measure of the relative rate of change of D�C�
with respect to C �18�. This measure is given by

D��C� =
CD��C�

D�C�
. �18�

The case when D�C� is constant gives D��C�=0. For this
case, we know that the linear diffusion equation is an excel-
lent fit for averaged simulation data from an exclusion pro-
cess with no contact interactions �1,10�.

Plots of D�C� and D��C� for contact-forming and contact-
maintaining interactions are shown in Fig. 5. By comparing
D��C� shown in Fig. 5�a� with the steady state results shown
in Fig. 4�a�, we can deduce various trends. For p close to
zero, D��C� is largest at high values of C, matching the large
discrepancies in the steady state results, while for smaller
positive values of D��C� the fit in the steady state results is
good. When D�C� becomes negative, we get singularities in
D��C�, shocks develop in the PDE solutions and the fit be-
tween discrete and continuum models breaks down.

In general, the quality of fit between the simulation data
and the relevant continuum model is acceptable when
�D��C���1. This is supported by comparing results for the
contact-maintaining interactions shown in Fig. 5�b� and

0 200

20

0 200

1

0 1

0

1

0 200

20

0 200

1

0 1

0

1

0 200

20

0 200

1

0 1

0

1

Von Neumann Hexagonal Moore

D(C)

C

C

x

x
y

(a) (b) (c)

D(C)

C

y

D(C)

C

y

C

x

x

C

x

x

FIG. 3. �Color online� Transient results for contact-forming in-
teractions for various cases with s=1− p and p=0.8 for �a� square
lattice with von Neumann interacting neighborhood �k=3, �=5�,
�b� hexagonal tiling �k=3, �=7�, and �c� square lattice with Moore
interacting neighborhood �k=3, �=9�. Results in the top row show
the distribution of agents in a single realization after 1000 time
steps. The middle row compares the solution of the continuum
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t=0,10,100,1000; arrows indicate the direction of increasing time.
The bottom row shows the functional dependence of D�C� on C
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data use P=�=�=1 and averages are taken over 200 Monte Carlo
realizations. Numerical solutions of the continuum models use �x
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solutions of the continuum model have a discontinuity.
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steady state results in Fig. 4�b�. The graph of D�C� for
u=0.01 and u=0.99 are symmetric about D�C�=0.5 and we
might expect a similar quality of fit for both these values.
However, �D��C��
1 only for values of u close to zero; in-
deed the case u=0.01 in Fig. 4�b� gives a poor quality of fit.

There are several possible sources for the deviations, in-
cluding truncation error in the Taylor series approximations
used to take continuum limits, failure of assumption regard-
ing the independence of occupancy status of lattice sites,
boundary effects for the steady state results, or a combination
of these issues. For example, for simulations with D�C��0,
Simpson et al. �17� observed the formation of aggregates
which means that the independence assumption is violated.
Instead of identifying each of these potential sources of error,
here, we prefer to propose Eq. �18� as a tool for predicting
whether the continuum models developed here describe the
global behavior of the system.

VI. INTERACTIONS THEN DIRECTION

In the second method, a motile agent assesses the desir-
ability of sites in its nearest neighborhood based on contact

interactions, and a move is made with a certain biased prob-
ability weighting. Specifying the criteria and formulating the
interaction rules is more complex than the methods previ-
ously described in Sec. IV since we no longer assess the
direction separately. Here, we give three examples based on
the one-dimensional line. As noted in Sec. IV D, these one-
dimensional interactions may be implemented on colinear
pairs of lattice sites in two or more dimensions, with no
effect on the relevant continuum model.

We consider an exclusion process on a regular lattice with
nearest neighbors N�v� of a site v, comprising L=N /2 colin-
ear pairs �v+ ,v−��N�v�. The site v+ denotes the target site,
while v− denotes the neighbor in the opposite direction that
the agent is moving away from. In an unbiased system with
movement probability P, an agent may move to the nearest
neighbor points v+ or v− with a equal probability 0.5P /L. In
a biased system, the occupancy status of the interacting
neighborhoods A�v+� and A�v−� will determine the bias.
Therefore, the transition probability T�v+ �v� that considers a
move to an arbitrary neighbor v+�N�v� will also depend on
the conditions in the neighborhood of the site v−.

A. Contact-forming interaction bias

There is a specified bias in a certain direction if moving in
that direction would form a contact, while moving in the
opposite direction would not. If both or neither direction is
contact-forming there is no bias. In the biased case, we de-
fine the probability 0.5�1+��P /L of moving in the direction
of forming a contact, and 0.5�1−��P /L of moving in the
opposite direction. The bias rules are illustrated in Fig. 6�a�.
The bias is independent of the occupancy of the immediately
adjacent sites v+ and v−, shown in gray. The bias parameter
satisfies −1	�	1. When �
0, movements favor contact
formation �attracting�, whereas when ��0, movements dis-
courage contact formation �repelling�.

The conditional transition probability for a move from v
to a site v+�N�v� depends on the occupancy of the contact-
forming neighborhood B�v ,v+� and on the occupancy of the
contact-forming neighborhood of the site in the opposite di-
rection B�v ,v−�. The transition probability is
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T�v+�v� =
P

L
�1 − �Cv+	��1

2
PB�v,v+�PB�v,v−�

+
1

2
�1 − PB�v,v+���1 − PB�v,v−��

+
1

2
�1 + ��PB�v,v+��1 − PB�v,v−��

+
1

2
�1 − ���1 − PB�v,v+��PB�v,v−�� . �19�

In the continuum limit, we obtain Eq. �2� with

D�C� = 1 − 8�C�1 − C� . �20�

In the absence of any bias ��=0�, Eq. �20� relaxes to a linear
diffusivity with D�C�=1. Furthermore, the diffusivity has the
potential to become negative for some C when 0.5��	1.
These interactions were implemented on a discrete model
with hexagonal tiling, with the contact-forming interaction
bias applied individually to the three opposing pairs of
neighboring tiles. Typical results are shown in Figs. 7�a� and
7�b� showing an excellent quality of fit. In fact, the fit is
excellent for a wide range of bias parameter, namely,
�� �−0.9,0.5�. We observed significant discrepancies be-
tween the two models for values of � outside this range.

B. Contact-breaking interaction bias

An agent with a single occupied interacting neighbor has
two choices of movement; it can attempt to move away from
the occupied site or toward it. In the latter case, the exclusion
process will prevent the move, so this amounts to a choice of
either moving away or not moving. However, in formulating
the rules in a discrete model, we want to retain the probabil-
ity of moving in the occupied direction, and allow the exclu-
sion process to prevent the move if chance determines an
attempt. We formulate a bias in terms of favoring preserva-
tion of contacts, so assign a probability of 0.5�1−��P /L of

moving away from an occupied site, and 0.5�1+��P /L of
moving toward it, as illustrated in Fig. 6�b�. The bias param-
eter satisfies −1	�	1. When �
0, movements discourage
contact breaking �favor contact retention�, whereas when
��0, movements favor contact breaking �discourage contact
retention�.

The conditional transition probability is

T�v+�v� =
P

L
�1 − �Cv+	��1

2
�1 − ��PU�v,v+� +

1

2
�1 − PU�v,v+��� .

�21�

The corresponding nonlinear diffusion function is

D�C� = 1 − �C�4 − 3C� . �22�

We note that D�C��0 for some C when 0.75��	1. This
result was also obtained by Anguige and Schmeiser �16� in
the continuum limit of a one-dimensional continuous time
master equation representing cell motility with adhesion.

The contact-breaking interactions were implemented for a
discrete model with hexagonal tiling, where the biasing rules
were applied individually to the three opposing pairs of
neighboring lattice sites. Typical results are shown in
Figs. 7�c� and 7�d�. Good fits were observed in the range
�� �−0.9,0.5�, with discrepancies outside this range, par-
ticularly above the critical value �=0.75.

C. General contact-forming and contact-breaking interaction
bias

Contact-breaking and contact-forming interactions can be
combined by adding a contact-forming/contact-breaking bias
. The rules are applied depending on one of six configura-
tions of neighboring site occupancy, illustrated in Fig. 6�c�.
This results in the conditional transition probability
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T�v+�v� =
P

L
�1 − �Cv+	���1 − PU�v,v+���1

2
PB�v,v+�PB�v,v−�

+
1

2
�1 − PB�v,v+���1 − PB�v,v−��

+
1

2
�1 + ��PB�v,v+��1 − PB�v,v−��

+
1

2
�1 − ���1 − PB�v,v+��PB�v,v−�� + PU�v,v+�

��1

2
�1 − ���1 − PB�v,v+�� +

1

2
�1 − �PB�v,v+��� .

�23�

The corresponding nonlinear diffusivity is

D�C� = 1 − C�8��1 − C�2 + 4��1 − C� + C� . �24�

This is a cubic polynomial, in contrast to the quadratic poly-
nomials found in Eq. �20� and Eq. �22�.

Setting �=0 and =�, Eq. �24� relaxes to Eq. �22� as
expected. Surprisingly, Eq. �24� does not relax to Eq. �20�
with an appropriate choice of parameters because the
contact-forming-only case ignores the occupancy of the im-
mediate adjacent neighbors when formulating the transition
rules, whereas the general case accounts for the occupancy.

D. Quality of fit between the discrete and continuum
models

Steady state simulations identical to those in Sec. V C
were performed with the in-line contact-forming and contact-
breaking interactions. The results obtained are consistent
with those obtained previously. In summary, when
�D��C���1, we observed an acceptable quality of fit,
whereas when �D��C��
1 the continuum model was unable
to match the averaged discrete data.

VII. CONCLUSIONS

In this work, we have taken a biologically motivated ex-
clusion process model, previously developed by Deroulers
et al. �6�, and generalized the agent-agent interactions to en-
compass contact-forming, contact-breaking, and contact-
maintaining interactions. This gives rise to a suite of discrete
motility models that can be implemented on arbitrary peri-
odic lattices. For each discrete model, we use conservation
arguments to arrive at a continuum model describing the col-
lective behavior of the agent density in the system. In all
cases, the continuum model is a nonlinear diffusion equation.
The solution of the PDE can be either smooth or discontinu-
ous.

There are a range of choices for implementing an exclu-
sion process model with contact interactions. Here, we ex-
plored the possibility of either �i� choosing the direction of
movement then the contact interactions or �ii� assessing the
contact interactions then determining the direction of move-
ment. We found that the first choice gives results which are
generally lattice dependent. Lattice independent results were

only achieved when interactions were restricted to the line of
intended movement. This is an interesting finding, which has
implications for the application of such models to real sys-
tems. It seems physically unrealistic to observe a micro-
scopic motility mechanism which gives rise to different mac-
roscopic descriptions depending on the lattice used to
discretize the spatial domain. For the second choice, we re-
stricted our discussion to the case when movement was re-
stricted to colinear sites, and the movement direction was
biased by contact interactions. Here, the continuum model is
lattice independent.

Interestingly, we observe that the average discrete and
continuum models match for some parameters and fail to
match for others. This is true even for the case when the
diffusivity was strictly positive. There are at least two poten-
tial explanations for the divergence of the continuum and
discrete models. Our assumption that the occupancy status of
lattice sites is independent may be inappropriate and the Tay-
lor series expansions may break down for some parameter
values. However, our observations have allowed us to de-
velop a simple tool which can be used to predict when the
continuum-discrete comparison matches and when it fails to
match.

Our work has consequences for modeling cell motility
and interpreting cell motility assays. Previous approaches us-
ing nonlinear diffusion equations to represent cell motility
have either used speculatively proposed forms of the nonlin-
ear diffusivity D�C� �19�, or relied on fitting solutions of a
nonlinear diffusion model to experimental data for a particu-
lar form of D�C� �20�. Neither of these approaches considers
how the macroscopic PDE model relates to individual cell
movement mechanisms, nor do they consider whether these
individual mechanisms were relevant in the system of inter-
est. Similar to Deroulers et al. �6�, our approach of proposing
a biologically realistic microscopic model and then averag-
ing the model to produce a PDE model is advantageous for
several reasons. First, we have the ability to incorporate re-
alistic cell-cell interactions from experimental data into a
discrete model. By averaging the discrete model to a relevant
PDE model, we avoid any speculative choice of a nonlinear
diffusivity. Second, we have the ability to produce both dis-
crete microscopic data as well as global continuum data and
to compare both sets of data to experimental results, which
are also likely to encompass a wide range of scales �21�.
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APPENDIX: NONLINEAR DIFFUSION FUNCTIONS

Table I summarizes the nonlinear diffusion function D�C�
arising from various one-, two- and three-dimensional lat-
tices in Sec. IV. The parameters p, q, r, s, u, and w are
motility probabilities. For the contact-maintaining interac-
tion, u is the probability of moving if at least one maintain
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TABLE I. Summary of the nonlinear diffusion function D�C� arising from various lattices and interaction neighborhoods in Sec. IV. The notation is defined in the text in Appendix and
Sec. IV.

Lattice and
interacting
neighborhood �N�v�� �A�v�� �M�v ,v���

�B�v ,v���
�U�v ,v���

Contact-maintaining
interaction General contact-forming and contact-breaking interaction

Contact-forming
interaction/contact-breaking

interaction

General lattice N b m k u+ �w−u��1−C�m r+ �s− p−q+r��1−C�2k+ �p�1−�C�+q�1+�C�−2r��1−C�k p+ �s− p��1+�C��1−C�k

�−1 q+ �s−q��1−�C��1−C�k

Line 2 2 0 1 N/A r+ �s− p−q+r��1−C�2+ �p�1−3C�+q�1+3C�−2r��1−C� p+ �s− p��1+3C��1−C�
q+ �s−q��1−3C��1−C�

Simple square
�von Neumann�

4 4 0 3 N/A r+ �s− p−q+r��1−C�6+ �p�1−5C�+q�1+5C�−2r��1−C�3 p+ �s− p��1+5C��1−C�3

q+ �s−q��1−5C��1−C�3

Square with
diagonals �Moore�

4 8 4 3 u+ �w−u��1−C�4 r+ �s− p−q+r��1−C�6+ �p�1−9C�+q�1+9C�−2r��1−C�3 p+ �s− p��1+9C��1−C�3

q+ �s−q��1−9C��1−C�3

Triangular
�hexagonal tiling�

6 6 2 3 u+ �w−u��1−C�2 r+ �s− p−q+r��1−C�6+ �p�1−7C�+q�1+7C�−2r��1−C�3 p+ �s− p��1+7C��1−C�3

q+ �s−q��1−7C��1−C�3

Hexagonal
�triangular tiling�

3 3 0 2 N/A r+ �s− p−q+r��1−C�4+ �p�1−4C�+q�1+4C�−2r��1−C�2 p+ �s− p��1+4C��1−C�2

q+ �s−q��1−4C��1−C�2

Simple cubic 6 6 0 5 N/A r+ �s− p−q+r��1−C�10+ �p�1−7C�+q�1+7C�−2r��1−C�5 p+ �s− p��1+7C��1−C�5

q+ �s−q��1−7C��1−C�5

Cubic with edges 6 18 8 9 u+ �w−u��1−C�8 r+ �s− p−q+r��1−C�18+ �p�1−19C�+q�1+19C�−2r��1−C�9 p+ �s− p��1+19C��1−C�9

q+ �s−q��1−19C��1−C�9

Cubic with edges
and corners

6 26 16 9 u+ �w−u��1−C�16 r+ �s− p−q+r��1−C�18+ �p�1−27C�+q�1+27C�−2r��1−C�9 p+ �s− p��1+27C��1−C�9

q+ �s−q��1−27C��1−C�9

Face centered cubic
and hexagonal
close-packed

12 12 4 7 u+ �w−u��1−C�4 r+ �s− p−q+r��1−C�14+ �p�1−13C�+q�1+13C�−2r��1−C�7
p+ �s− p��1+13C��1−C�7

q+ �s−q��1−13C��1−C�7

Body centered cubic 8 8 0 7 N/A r+ �s− p−q+r��1−C�14+ �p�1−9C�+q�1+9C�−2r��1−C�7 p+ �s− p��1+9C��1−C�7

q+ �s−q��1−9C��1−C�7

Body centered cubic
plus six orthogonals

8 14 6 7 u+ �w−u��1−C�6 r+ �s− p−q+r��1−C�14+ �p�1−15C�+q�1+15C�−2r��1−C�7 p+ �s− p��1+15C��1−C�7

q+ �s−q��1−15C��1−C�7
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neighbor is occupied, while w is the free motility probability.
For all other rules, s is the free motility probability �all in-
teracting neighborhoods unoccupied�. For the general
contact-forming/contact-breaking interactions, p is the prob-
ability of moving for contact-forming interactions without
contact-breaking interactions, q is the probability of moving
for contact-breaking interactions without contact-forming in-
teractions, and r is the probability of moving for simulta-
neous contact-forming and contact-breaking interactions.

Other parameters are the number of nearest neighbors N
= �N�v��, number of interacting neighbors b= �A�v��, number
of contact-maintaining neighbors m= �M�v ,v���, number of
contact-forming and contact-breaking neighbors
k= �B�v ,v���= �U�v ,v���=b−m−1. An extra parameter
�=b+1 is introduced to make the general lattice expressions
more compact. When an interacting neighborhood is such
that there are no contact-maintaining neighbors, the contact-
maintaining rules are not applicable �denoted N/A�.
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